
IEEE Annals of the History of Computing 1058-6180/00/$10.00 © 2000 IEEE 61

[Editor’s Note: There are recent initiatives to pursue more
aggressively the history of software. For instance, the Charles
Babbage Institute and the Heinz Nixdorf Museum cosponsored
a conference on this subject in Paderborn, Germany, in April
2000. A report about this conference will undoubtedly appear
soon in Events and Sightings. In that spirit, I asked Michael
Jackson to give us his memories of the origins of the popular
software development methods most closely associated with
his name.]

The Origins of JSP and JSD:
A Personal Recollection
Michael Jackson

I performed my first serious programming work in the
very early 1960s in Assembler languages on IBM and
Honeywell machines. Although I was a careful designer—
drawing meticulous flowcharts before coding—and a con-
scientious tester, I realized that program design was hard
and the results likely to be erroneous. I wrote some asser-
tions in the Honeywell programs that formed a little sys-
tem for an extremely complex payroll, with runtime tests
that halted program execution during production runs.
Time constraints did not allow restarting a run from the
beginning of the tape. So for the first few weeks, I had the
frightening task on several payroll runs of repairing an
erroneous program at the operator’s keyboard correcting
an error in the suspended program text, adjusting the
local state of the program, and sometimes modifying the
current and previous tape records before resuming exe-
cution. On the Honeywell 400, I could do all this directly
from the console typewriter. After several weeks without
halts, there seemed to be no more errors. Before leaving
the organization, I replaced the runtime halts with brief
diagnostic messages: not because I was sure all the errors
had been found, but simply because there would be no
one to handle a halt if one occurred. An uncorrected error
might be repaired by clerical adjustments; a halt in a pro-
duction run would certainly be disastrous.

In 1964, I went to work at John Hoskyns and
Company, a new consulting firm in London. Seeking a
more reliable and systematic way of programming, we
spent a lot of time thinking about the problems of pro-
gram design. In those days, disk drives were quite new
and most often were used to hold sequential files (like the
tape files that were the standard basis of data processing
systems). So program design seemed to be chiefly about
sequential processes. Barry Dwyer joined the company in

1966, and Brian Boulter joined soon after. We worked
together on improving our design methods. We experi-
mented with top-down decomposition and with some
notions rather similar to coupling and cohesion.
However, these notions did not seem to hold the key to
design. Eventually we saw, in somewhat vague terms, that
the coding discipline of structured programming invited
the adoption of a hierarchical program structure to match
the structures of the data files. Sometimes those data
structures were incompatible, but we were not sure how
to handle this difficulty. We also recognized (it was
Dwyer’s idea) that backtracking was an important tech-
nique that everyone else (practitioner or academic, work-
ing on program design methodology) seemingly ignored.

A vital stimulus to our work on program design was a
project the Microsystem we did for a large insurance
broker. The application demanded daily processing of
small numbers of many different transaction types, each
with its own pattern of access to the many master files.
An online transaction-based solution was not economi-
cally practical at the time; the low volumes and varied
access patterns made it impossible to design an efficient
batch system. The Microsystem worked as a dynamically
scheduled batch system. Transactions were run against
one file until they needed access to another. They were
then suspended and sorted into the appropriate order for
the next run. Alternating runs and sorts continued until
all the transactions in the batch were completed. In this
way, the execution of the system was scheduled accord-
ing to the needs of the current batch of transactions,
rather than in a fixed pattern of system flow. Dwyer did
most of the detailed design of Microsystem, and many of
the JSP ideas had their origin there.

Around this time, in the mid 1960s, larger random
access memories (as large as 256 Kbytes) were becoming
commonplace, and the size of data processing programs
increased dramatically. As programs grew larger, mono-
lithic program texts became less and less practical.
Modular Programming became a widely recognized con-
cern, and the first shoots of the Structured Revolution
began to appear. Larry Constantine ran a Modular
Programming Symposium in 1968, with contributions
from himself and from George Mealy, along with several
others. Dwyer and I found an audience in the United
Kingdom and the United States for seminars on our pro-
gram design ideas.

At the end of 1970, I left Hoskyns and started my own

Anecdotes
James E. Tomayko, Editor

company, Michael Jackson Systems Limited,
working alone. In 1971, I was invited to give a
program design seminar at a Wall Street bank, a
series of two-day Professional Development
Seminars in the United States for the
Association for Computing Machinery, and
then a series of one-week courses in the United
Kingdom, partly sponsored by the British
Computing Society. In developing the material
for these courses, and in argument and discus-
sion with the course participants, the design
method later known as JSP was worked out in
detail. There was a more exact diagrammatic
notation for the regular structures and a more
exact correspondence between data and pro-
gram. Incompatibilities between data structures,
now classified in three kinds of structure clash,
were more surely identified and resolved. The
JSP coding technique of program inversion—
something like an implementation of the semi-
coroutines of Simula 67 that was practical for
Cobol programs—was worked out in detail. The
correct placing of operations, especially read
operations, in the program structure was sys-
tematized. The backtracking technique was
embodied in three design steps: first ignoring
the need for backtracking, then introducing the
necessary GOTO (the “quit statement”), and
finally dealing carefully with the side effects.

It all worked very well for sequential pro-
grams. The company began to grow. Starting
with Sweden, we licensed our course and
method material in many European countries,
in the Americas, and in the Far East. In 1974,
the UK government adopted JSP (under the
name SDM) as its standard program design
method. Boulter and I designed and built a pre-
processor for Cobol that we called JSP-Cobol. It
allowed a program to be designed as a tree of
sequential processes, communicating by writ-
ing and reading virtual sequential data streams.

Using program inversion, any process of the
tree could be chosen as the root, and the whole
tree mechanically generated as one or many
Cobol compilation modules. In keeping with
Cobol style, the preprocessor language provid-
ed an Implementation Section, in which arbi-
trary low-level implementations of the basic
sequential write and read primitives could be
separately specified for each real or virtual data
stream, to allow compatibility with CICS, IMS,
and other externally defined environments.
Essentially, the method and its supporting tools
abstracted the general notion of a sequential
data stream from its many particular embodi-
ments in tape and disk files, printer files,
sequences of calls of a procedure, streams of
messages in a communication channel,
sequences of accesses to database records, and
even sequences of low-level interrupts.

I described JSP though not under that
name in the book Principles of Program Design,
published in 1975.1 The ideas of JSP began to
reach a wider audience through this book and
its translations—in German, Japanese, Dutch,
Spanish, and Portuguese—and also through
other authors’ books on JSP. The method also
attracted academic attention and was taught in
a number of university courses.2

As the company grew, we began to extend
JSP, developing it into the method for specify-
ing and implementing information systems
that was eventually named JSD. An informa-
tion system could be seen as a simulation or
model of the real world, with added function-
ality to provide the information outputs. JSD
viewed the real world as a collection of entities
such as customers, products, or accounts. Each
entity has a long-term history of events, and
this history forms a sequential process.
Execution of the process can be resumed and
suspended for each transaction or for each
batch, applying to entity processes the tech-
nique the Microsystem had applied to transac-
tions. Communication among entities is by
shared events; the local variables of the process-
es are the “state vectors” of the entities. In the
eventual implementation, the state vectors
become the entity master records, the events
form the transactions, and scheduling of the
sequential processes becomes the responsibility
of batch program shells. Essentially, this was an
object-oriented, or object-based, view of the
system: The JSD entities are objects, and the
program texts executed for the transaction
types implement the objects’ methods.

In 1977, John Cameron joined the company,
and we worked together on the development of
JSD, refining the underlying ideas into a coher-

62 IEEE Annals of the History of Computing

Anecdotes

[JSP-Cobol] allowed a

program to be designed

as a tree of sequential

processes, communicating

by writing and reading

virtual sequential

data streams.

ent systematic procedure for system analysis,
specification, and design. We gave the very first
JSD courses in 1979 and early 1980. These were
highly experimental presentations of a very
incomplete method. Later we succeeded in fill-
ing in many of the gaps and repairing some of
the defects, and public course presentations
began in the summer of 1980. I described the
method in the book System Development,23 pub-
lished in 1983. In the same year, Cameron wrote
his IEEE Tutorial Text on JSP and JSD. The use of
JSD spread from batch data processing systems
to interactive and embedded systems.
Specifically, it proved effective for simulation
and command-and-control systems. For exam-
ple, it was used very successfully in the simula-
tion of a fly-by-wire helicopter and in the
development of command-and-control software
for a submarine system.

In spite of these successes, I had been grad-
ually coming to recognize that JSP and JSD
were less universal in their application than we
had at first supposed. This was not a defect. It
was an important technical strength: Effective
software development methods must be
sharply focused to exploit the characteristics of
particular classes of problems and systems.
After 1984, my personal interests shifted into
broader software engineering concerns about
problem and method classification and struc-
ture; principles of description in software devel-
opment; and the underlying basis in reality for
requirements, specifications, and other descrip-
tions of the kinds that software developers pro-
duce and manipulate. Cameron and others
continued to work on JSD and began to focus
on a more explicitly object-oriented version of
the method. The company developed some
tools to support JSD, but these tools were less
successful than the Cobol preprocessor and
other JSP tools our Swedish licensees and the
Atomic Energy Research Establishment at
Harwell developed.

Since 1970, many people contributed to the
development of JSP and JSD. Among them were
Alan Birchenough, Tony Debling, Andrew
Farncombe, Leif Ingevaldsson, Jacqueline
Kathirasoo, Ashley McNeile, Alan Moore, Hans
Naegeli, Dick Nelson (who introduced the name
JSP), Jim Newport, Bo Sanden, Peter Savage, Ray
Scott, Mike Slavin, and many others. Today, JSP
and JSD are still in use in Europe and the United
States, but in a relatively small number of organ-
izations. New tools are still being built.

Michael Jackson
101 Hamilton Terrace
London NW8 9QY, England

Acknowledgments
Alan Birchenough reminded me of some of our
successes. Larry Constantine gave me some
information about the Modular Programming
Symposium of 1968. Barry Dwyer gave me
much help, reminding me of many things I
had forgotten or only dimly remembered.
Andrew Farncombe confirmed several points
and corrected a mistake in my early history of
JSD. Daniel Jackson helped me to clarify some
obscurities and omissions in my account. Ray
Scott confirmed my recollections of the late
1970s and the 1980s.

TRADIC
Frank S. Preston
[Editor’s Note: Frank Preston has more on the
TRADIC computer described in a recent issue.]

This relates to two articles on TRADIC in the
Annals last year.24,25

In about 1954, Cdr. Lemos (Navy Bureau of
Ordnance, later Bureau of Air) asked me to visit
Bell Laboratories in Murray Hill, New Jersey, to
see and appraise a digital computer for bomb-
ing. I was the project manager for the Norden
Laboratories in charge of development of the
AN/ASB-1 bombing system, just then becom-
ing operational for Navy attack planes (AJ-1
and A-3D). This visit was for a single day.

I can place the date after May 1953, because
I had bought a Curta Calculator in Switzerland
that I needed to check results produced by our
CP-66/ASB-1 computer, an analog bombing
and navigation system. I carried the Curta in
my attaché case in its waterproof container,
which is about the size of a grenade. When the
guard at the front desk looked in my case, he
grabbed the calculator and started to run with
what he thought was a bomb. With great diffi-
culty, I persuaded him to stop running and let
me open it. (He could not open it because of
the left-handed thread on the case.) Because of
other events, I believe this was before 1955.

It was explained to me that Western Electric
promoted the trip because it had proposed a
version of TRADIC to the Navy for some appli-
cation—not necessarily for bombing. Despite
that, I was asked to comment on the applica-
tion to a bombing system. We were shown
something smaller than the Leprechaun com-
puter (Harris,24 see Fig. 3 on page 53) that per-
formed some navigation problem. This
computer was smaller and much lighter than
the size quoted in Brown’s25 Table 4 (on page
57) or Brown’s25 Fig. 6 (on page 59). We were
told that it computed a complete bombing
solution every second and that this computer

April–June 2000 63

was interpolated to give 100 results per second.
Our evaluation was that the computer

showed great promise. Our primary concern was
that Bell Labs had decided to do everything with
transistors. This worked in the logic and arith-
metic sections but made the storage and other
portions of the computer less desirable than
other technologies then available. Also, because
of limitations on aircraft carriers, considerable
improvement would be needed before an opera-
tional unit could be available. (Because of being
carrier-based, the Norden system required special
provisions in the plane and the system for bore-
sighting and for interchanging components
compared with the Air Force systems.) The
Norden system was both radar and visual (with
a periscope), and the elevation angle computer
was half in the periscope and half in the com-
puter to provide the angle transfer. We had had
Helipot (Beckman) develop custom potentiome-
ters (accurate to 0.025 percent) for this. (See IRE
Transactions, vol. EC-4, no. 3, p. 101, Sept.
1955,26 and patent 2,738,934.) Westinghouse
Electric proposed its own potentiometers at
$10,000 each, whereas ours cost under $500.

More significant as an illustration of this
stage in development is that the military did
very little to encourage technical exchanges
between contractors, and the competitive situ-
ation made this visit a rarity. Brown25 discusses
in his introduction the Norden Optical Bomb
Sight (Mark 15). Manufacture of this ceased in
May 1945, although it was in operational use
for a while later. When we started to develop
postwar bombsights, we wrote the specifica-
tions for the Navy, and these specifications were
given to the Army Air Corps at the time it was
converted to the Air Force. This served as the
start of the separate development of bomb-
sights. The Navy and Air Force became engaged
in a competition for the assignment to deliver
tactical and strategic (atomic) bombs, so we
learned little of Air Force bombing develop-
ment. The Navy chose to use the same bomb-
sight in various aircraft, whereas the Air Force

went to a weapons system type of contract ear-
lier than the Navy. The result was that the
Norden systems benefited from the improved
capability due to longer operational use, and
the Air Force systems tracked new technology
more closely. We introduced a digital computer
(DDA) in about 1956 to replace the analog one.
This was earlier than the announced Air Force
digital bombing systems.

Frank S. Preston
88 Notch Hill Road, Apt. 324
North Branford, CT 06471

Lovelace–Babbage Letters Discovered in
Newcastle
Christopher Goulding

The discovery of a hoard of unpublished let-
ters in Newcastle upon Tyne, England, has shed
new light on the work of 19th-century com-
puter pioneer Charles Babbage and his rela-
tionship with Augusta “Ada” Byron Lovelace
(1815–1852), daughter of poet Lord Byron.

The letters were unearthed in the Brooks
Manuscript Collection, a large Victorian auto-
graph collection owned by the Society of
Antiquaries of Newcastle upon Tyne and held
at Northumberland County Record Office,
which I was looking through as part of my
postgraduate English literature research.
Among 12 leather-bound volumes of papers
relating to hundreds of literary and historical
figures was correspondence from Lord Byron,
his wife, and their daughter.

The future Lady Lovelace was Byron’s only
legitimate child. Having been deserted by the
wayward and rakish poet within months of
their child’s birth, Lady Byron perhaps under-
standably steered her daughter away from the
world of poetry, preferring to immerse her in
the world of mathematics and science. Lady
Byron herself had been a keen mathematician
before meeting her husband, who had dubbed
her “the Princess of Parallelograms.”

Lady Lovelace’s propensity for the subject
and her family connections in London society
led her to meeting and working with some of
the most eminent scientists of her day. Among
these were Charles Wheatstone, the noted
researcher into optics and acoustics, and
Babbage. Lady Lovelace had occasionally writ-
ten to Babbage, but it was Wheatstone who first
led her to become closely involved with
Babbage’s work.

In 1840, Babbage had been invited to a sci-
entific convention in Turin, Italy, which had
resulted in an account of his work being writ-
ten by the Italian military engineer Luigi

64 IEEE Annals of the History of Computing

Anecdotes

Westinghouse Electric

proposed its own

potentiometers at $10,000

each, whereas ours cost

under $500.

Menabrea. A French version of Menabrea’s
paper appeared in Bibliotheque Universelle de
Geneve in 1842. Wheatstone (who worked for
the British periodical Taylor’s Scientific Memoirs,
which specialized in publishing translations of
articles from foreign journals) spotted this arti-
cle. Wheatstone offered the translation job to
Lady Lovelace, and so her association with
Babbage began. When Babbage heard that Lady
Lovelace was working on the paper, he invited
her to add her own notes. She did so to great
effect, though the subsequent course of her
work with Babbage was never an easy one.

One of the newly found letters is from Lady
Byron to her daughter, dated 13 November (no
year is quoted), and hints at the Byronic side
of Lady Lovelace’s character, which could occa-
sionally lead to her scientific thoughts being
infused with metaphysical overtones. Lady
Byron obviously saw it as her duty to steer her
daughter away from her more extreme flights
of fancy and to stay on a strictly mathematical
course:

Dearest Ada—It is my part to be a calm observer
of your courses, and to employ my sympathies
in estimating rather than exalting you. You gave
an admirable account of duty when you said that
it consisted in your “putting and maintaining
yourself in such a state, physical and mental,
that God and his agents could use you” & c.

The Hypothesis that you [illegible] a
“Prophecy” in any sense beyond that which all
intellectual beings may claim it, is to be estab-
lished by proofs of your own insight into the nat-
ural and spiritual world—These must result from
your union with the “All-knowing Integral”—
from whom may nothing divert you!

However, as commentators on her work
have since pointed out, Lady Lovelace’s imagi-
nation enabled her to see beyond the technical
minutiae of Babbage’s calculations and to per-
ceive the greater potential of his machines. Her
comparison of the “algebraic patterns” com-
puted by the analytical engine to the fabric pat-
terns woven by a Jacquard loom is a vivid
metaphor decades ahead of its time.

Three of Lady Lovelace’s letters addressed to
Babbage provide some new insight into their
often uneasy working relationship. One letter
refers to her involvement in the development
of what are referred to as “variable cards” for
use with Babbage’s machines:

I have just received your letter about the Variable
Cards and I hasten to send you these few lines
which will be put into the twopenny post for you

in Town this morning by means of an accidental
opportunity.

I perceive nothing in what I sent yesterday,
which is at all inconsistent with the explanations
you gave. This is lucky. I hope that you may
receive this in time to send me back the sheet I
sent you yesterday, from which I wish to make
one very trifling alteration in a part of it. And I
can only do so myself. If it is gone, I must man-
age it in the proofs in which I suppose I could
insert a sentence.

The letter reflects Lady Lovelace’s close level
of involvement in Babbage’s work and later
hints at his abrupt and peremptory attitude in
making corrections to her work, as she ends the
letter: “I hope you unpasted what you had so
cruelly eclipsed.”

Indeed, her professional relationship with
Babbage seems at times to have been rather
fraught, especially when it overlapped with her
personal life. On one occasion, Babbage had
advised Lady Lovelace’s husband (William
King, the Earl of Lovelace and also Baron
Ockham) against taking a seat on the board of a
railway company. Lady Lovelace wrote to
Babbage, incandescent with rage:

My dear Babbage—You cannot conceive the mis-
chief you have done me by dissuading Lovelace
from taking part in the proposed Central Railway
scheme. It is the very thing which my mother &
I had looked for him as an occupation calculat-
ed to occupy his restless mind which needs work
and occupation.

To my surprise and extreme distress, he has
just come in saying that seeing you, you have
pointed out to him he is not a man who can need an
occupation!

The least you can do for us after this mischief
you have done is to suffer something in the place
of what as I tell you had been looked to a God-
send for our family quiet—you can have no con-
ception of what my husband is like when his
home alone occupies his irritable energies. So
remember this.

On a more somber note, another letter to
Babbage conveys a vivid picture of the suffer-
ing Lady Lovelace endured due to cancer of the
uterus, which was to lead to her death at 37:

My dear Babbage—It would be a pleasure for me
to see you this evening, even if only for half an
hour; but as long as you like would be preferable.
Could you call in about eight or nine. I have
been very ill really, & confined to my bed for
some time.

April–June 2000 65

It has been impossible for me to leave Ockham
now for many weeks; as I have only now come
(yesterday) to feel myself a little ... I have been
desperately ill. I never had anything of this. I
have escaped with my life.

Without saying what she wished to see
Babbage about, the letter ends.

Lady Lovelace’s contribution to the early
years of computing science was acknowledged
and commemorated in 1980, when the U.S.
Department of Defense named the programming
language for its military systems after her: Ada.

Christopher Goulding is a PhD research student in
the Department of English Literature at the
University of Newcastle upon Tyne.

Christopher Goulding
39 Ashleigh Grove, Jesmond
Newcastle upon Tyne NE2 3DJ, England

References
1. M.A. Jackson, Principles of Program Design. Lon-

don: Academic Press, 1975.
2. M. András, Programtervezés Jackson-módzerrel.

Budapest: Computing Applications and Service
Company, 1983.

3. R.S. Burgess, An Introduction to Program Design
Using JSP. London: Hutchinson, 1984.

4. J.R. Cameron, JSP & JSD: The Jackson Approach to
Software. Washington, D.C.: IEEE CS Press, 1983.

5. J.R. Cameron, “An Overview of JSD,” IEEE Trans.
Software Eng., vol. 12, no. 2, pp. 222–240, Feb.
1986.

6. J.R. Cameron, “The Modelling Phase of JSD,”
Information and Software Technology, vol. 30, no.
6, pp. 373–383, July/Aug. 1988.

7. J.W. Hughes, “A Formalisation and Explication of
the Michael Jackson Method of Program Design,”
Software Practice and Experience, vol. 9, pp.
191–202, 1979.

8. L. Ingevaldsson, JSP: A Practical Method of
Program Design. London: Input-Two-Nine,1979.

9. L. Ingevaldsson, JSD metoden for systemutveck-
ling. Lund, Sweden: Studentlitteratur, 1985.

10. M.A. Jackson, “Information Systems: Modelling,

Sequencing, and Transformations,” Proc. Third
Int’l Conf. Software Eng., Washington, D.C., 1978,
pp. 72–81.

11. M.A. Jackson, “Jackson Development Methods:
JSP and JSD,” J.J Marciniak, ed., Encyclopaedia of
Software Engineering. New York: John Wiley &
Sons, 1994, vol. 1, pp. 585–593.

12. H. Jansen, Jackson struktureel programmeren. Arn-
heim: Academic Service, 1983.

13. M.B. Josephs, C.A.R. Hoare, and H. Jifeng, “A
Theory of Asynchronous Processes,” Oxford Univ.
Computing Laboratory Technical Report PRG-TR-
6-1989.

14. J. Kato and Y. Morisawa, “Direct Execution of a
JSD Specification,” Proc. COMPSAC, Washington,
D.C., 1987.

15. K. Kilberth, Einfuhrung in die Methode des Jackson
Structured Programming. Braunschweig,
Germany: Vieweg & Sohn,1988.

16. D. King, Creating Effective Software: Computer Pro-
gram Design Using the Jackson Methodology. Your-
don Press, 1988.

17. C.D. Poo and P.J. Layzell, “Enhancing the
Software Maintenance Factor in JSD Using
Rules,” Proc. CompEuro, 1990, pp. 218–224.

18. C. Potts, A. Bartlett, B. Cherrie, and R. McLean,
“Discrete Event Simulation as a Means of Validat-
ing JSD Specifications,” Proc. 8th ICSE, 1985.

19. B. Sanden, Systems Programming with JSP. Brom-
ley, England: Chartwell-Bratt, 1985.

20. K.T. Sridhar and C.A.R. Hoare, “JSD Expressed in
CSP,” Oxford Univ. Computing Laboratory Tech-
nical Monograph, PRG-51, 1985.

21. A. Sutcliffe, Jackson System Development. London:
Prentice-Hall International, 1988.

22. J.B. Thompson, Structured Programming with
COBOL and JSP. Bromley, England: Chartwell-
Bratt, 1989.

23. M.A. Jackson, System Development. London: Pren-
tice-Hall International, 1983.

24. J.R. Harris, “The Earliest Solid-State Digital Com-
puters,” Annals of the History of Computing, vol.
21, no. 4, pp. 49–54.

25. L.C. Brown, “Flyable TRADIC: The First Airborne
Transistorized Digital Computer,” Annals of the
History of Computing, vol. 21, no. 4, pp. 55–61.

26. IRE Trans., vol. EC-4, no. 3, p. 101, Sept. 1955.

66 IEEE Annals of the History of Computing

Anecdotes

Further Reading
B. Wooley, The Bride of Science: Romance,

Reason, and Byron’s Daughter. London:
Macmillan, 1999.

D. Stein, Ada: A Life and a Legacy. Cambridge,
Mass.: MIT Press, 1985.

